Small Unmanned Air Vehicle Center of Excellence

Tim McLain

Randy Beard

Jerry Bowman

Mike Goodrich

Deryl Snyder

Technology Focus

Objective:

Create autonomous miniature air vehicles (AMAVs) having unique technology features to serve

- Military markets
- Commercial markets

We produce:

- Vehicles
- Payloads
- Controls/autonomy
- Interfaces

Market Opportunities for UAVs

Military:

- Intelligence, surveillance, and reconnaissance
- Attack of fixed and moving targets
- Communications node
- Suppress enemy air defenses

Civil and Commercial:

- Monitor environment meteorology, pollution, mapping, mineral exploration, infrastructure surveillance
- Monitor disaster areas forest fires, avalanches, nuclear contamination
- Law enforcement road traffic, border patrol, drug control
- Communications relays news broadcasts, disaster relief, sports events
- Precision agriculture monitor crops, livestock

Unmanned Air Vehicles

BYU

> State of the art:

- > Large
- > Expensive
- ➤ Hard to fly requires a team
- > High performance
- > Small quantities

- ➤ Autonomous Miniature Air Vehicles (AMAVs)
- > Small
- Inexpensive
- Capable, but lower performance
- > Easy to fly
- Large quantities

AMAVs represent a "disruptive technology"

Milestones Accomplished

- 1. Autopilot licensed spin-off company created
- 2. Technology plan created meets market need
- 3. Analysis has defined market opportunities
- 4. Proposals funded \$3.1M in past 3 years
- 5. Proposals submitted \$4.5M in past year
- 6. Many technical accomplishments leading to commercial opportunities

Technical Accomplishments

- > Autopilot miniaturization and enhancement
- Image directed control
- Improved trajectory tracking
- Cooperative control demonstration
- > Improved operator interfaces
- New airframes
 - Inexpensive man-packable plane
 - Integrated camera plane

BYU autopilot technology licensed to spin-off: Procerus Technologies of Provo, Utah

- > \$800K in revenue in first year of operation
 - > 300 autopilots sold to Air Force, Army
- ➤ 4 full-time employees, average salary of \$67K
- > 90 percent of revenue stays in Utah
- Significant future opportunities
 - ➤ Autopilot supplier for 4 of 6 respondents to recent Air Force MAV Request for Proposals

Corporate Partners

- Procerus Technologies Utah start-up company, licensee
- Applied Research Associates partner to deliver UAVs to military
- ➤ Northrop Grumman autopilot user/partner
- Raytheon autopilot user/partner
- Lockheed-Martin autopilot user/partner
- > SAIC autopilot user/partner
- MITRE Corporation autopilot user/partner

Intellectual Property

Patent filed for autopilot technology

Currently manufactured and sold by Procerus Technologies, Provo, Utah

www.procerusuav.com

- Provisional patents in process
 - Eye on Target
 - Focal Point video stabilization
 - Camera pan and tilt

US Aerial Surveillance Market

	annual flight hours	cost per hour	annual spending	potential number of units per year	potential market
law enforcement	500,000	\$500	\$250M	1000	\$15M
pipeline surveillance	4,000,000	\$700	\$2.8B	8000	\$120M

Assumptions:

- > 20% of manned helicopter hours replaced by AMAV hours
- > AMAV useful life 200 hours, 1 back-up
- ➤ AMAV unit cost \$15K

Note: At \$500/hr, time to pay off unit cost is 30 hours

Other markets examined:

Border patrol, forest service, traffic monitoring

- ➤ DoD projected expenditures, FY 2003-2009
 - ➤ AMAVs: \$63M per year
 - ➤ All UAVs: \$2.7B per year
- ➤ Given success of UAVs and AMAVs in OEF and OIF, estimates are conservative
 - Aerovironment projects \$300M per year
- BYU's AMAV market space
 - > \$20M+ now
 - Growing to \$100M

Market Opportunity Summary

Commercial

Law enforcement \$15M

Pipeline surveillance \$120M

Military \$100M

Total \$235M

Funding Activity

Total research funding: \$4.2M (2000-2009)

- > Support from AFOSR, AFRL, NASA, Army, DARPA
- Current external funding: \$700K per year
- > 6 to 1 match of COEP support

Technical Team

Tim McLain (Mechanical Engineering)

- Visiting scientist Air Force Research Lab
- > PI on \$950K of UAV research
- Cooperative control, trajectory generation and tracking

Randy Beard (Electrical and Computer Engineering)

- Lead developer of BYU autopilot technology
- > PI on \$1.0M of UAV research
- > AMAV control, trajectory generation, team consensus

Mike Goodrich (Computer Science)

- Research staff Nissan, USA
- > PI on \$1.3M of user interface research
- Efficient, natural man/machine interfaces

Jerry Bowman (Mechanical Engineering)

- > International MAV competition champion team mentor
- MAV airframe design

Deryl Snyder (Mechanical Engineering)

- > Technical lead on Air Force Tactical Mini UAV development
- > Aerodynamic modeling, airframe development

Future Plans

Jai 200	•	ul 105	Jan 2006		2	Jul 2006
	Video image stabilizati	on for AMAVs		Anticipa	ted	
	Inexpensive turn-key A	MAV		licensing dates		
	Hand-held AMAV interf	ace				
	Pan-tilt camera payloa	d				
	Eye-on-target surveilla	nce				
	Pipeline surveillance Al	MAV				
	AMAV with integrated	SAR				

COEP Funding Request

- > Requesting \$130K for 2005-2006 funding year
- > Represents a 6 to 1 match

